Искусственный интеллект спасет от кризиса?

По предварительным оценкам, в нынешнем году российский ИТ-рынок в денежном выражении будет не сильно отличаться от предыдущего. Одна из причин этого — общая экономическая ситуация в стране. «В целом по текущему году мы ожидаем, что экономика покажет рост на уровне 1,8%, а инфляция закончит год на отметке 3,4%», — отметил министр экономического развития РФ Максим Орешкин, рассказывая осенью этого года о прогнозе социально-экономического развития страны на 2019-2021 гг. и на период до 2024 г.

Одним из таких рынков является рынок систем искусственного интеллекта (ИИ). Выступая на ноябрьском заседании Комитета АПКИТ по мониторингу развития ИТ-индустрии, глава этого комитета и вице-президент IBM Кирилл Корнильев напомнил, что, по оценкам Frost & Sullivan, внедрение технологий ИИ к 2030 г. обеспечит прирос оборота компаний мира на 15,7 трлн. долл. (10,7 трлн. из них придутся на компании США и Китая), говорится в статье ITWeek.

Примерно такие же оценки вклада ИИ в мировую экономику содержатся в отчете PwC «What’s the real value of AI for your business and how can you capitalize?»: он будет плавно увеличиваться с примерно 1 трлн. долл. в 2017 г. до почти 16 трлн. долл. в 2030-м. Что же касается нашей страны, то в ней рынок машинного обучения вырастет с 700 млн. руб. в 2017 г. до 28 млрд. руб. в 2020-м (то есть примерно в 40 раз!), а в этом году составит около 1 млрд. руб.

На фоне столь высоких ожиданий интересно мнение руководителя Центра когнитивных технологий ГК «Ай-Теко» Ильи Калагина, что рынки ИИ и машинного обучения могут спасти отечественных интеграторов от разорения, обусловленного падением спроса на традиционные ИТ-проекты.

В то же время следует понимать, что ИИ — не панацея, подчеркнул Илья Калагин. Да и не всегда искусственный интеллект эффективнее естественного. Особенно если последний использует хорошо развитые традиционные методы прикладной математики, «материализованные» в современных BI-cистемах. Ведь не секрет, что разработчики ИИ-cистем склонны преувеличивать свои успехи и замалчивать неудачи, зачастую создавая о нейронных сетях и нейрокомпьютерах необъективное впечатление. Впрочем, как отмечает Илья Калагин, данная ситуация характерна не только для разработчиков нейросетевых систем.

Он также считает, что прежде чем искусственные нейронные сети можно будет использовать для решения задач, где поставлены на карту человеческие жизни или важные промышленные объекты (к примеру, в ядерной энергетике), должны быть решены вопросы надежности этих сетей. Вместе с тем он обращает внимание на то, что процесс улучшения ИИ-технологий происходит постоянно и современные нейросетевые алгоритмы по своей эффективности уже заметно превзошли традиционные алгоритмы в области машинного зрения и перевода.